Safety-modified episomal vectors for human gene therapy.
نویسندگان
چکیده
The effectiveness of ongoing gene therapy trials may be limited by the expression characteristics of viral and plasmid-based vectors. To enhance levels of heterologous gene expression, we have developed a safety-modified episomal expression vector that replicates extrachromosomally in human cells. This vector system employs a simian virus 40 (SV40) large T antigen mutant (107/402-T) that is deficient in binding to human tumor suppressor gene products, including p53, retinoblastoma, and p107, yet retains replication competence. These SV40-based episomes replicate to thousands of copies by 2-4 days after gene transfer in multiple types of human cell lines, with lower activity in hamster cells, and no detectable activity in dog, rat, and murine cell lines. Importantly, 107/402-T has enhanced replication activity compared with wild-type T antigen; this finding may be due, in part, to the inability of p53 and retinoblastoma to inactivate 107/402-T function. We demonstrate that the level and duration of 107/402-T expression regulates the observed episomal copy number per cell. Compared with standard plasmid constructs, episomes encoding 107/402-T yield approximately 10- to 100-fold enhanced levels of gene expression in unselected populations of transient transfectants. To determine if 107/402-T-based episomes replicate extrachromosomally in vivo, tumor explants in nude mice were directly injected with liposome/DNA complexes. Using a PCR-based assay, we demonstrate that SV40-based episomes replicate in human cells after direct in vivo gene transfer. These data suggest that safety-modified SV40-based episomes will be effective for cancer gene therapy because high level expression of therapeutic genes in transient transfectants should yield enhanced tumor elimination.
منابع مشابه
HIV-Derived Lentiviral Vectors: Current Progress toward Gene Therapy and DNA Vaccination
Lentiviral vectors are promising gene delivery tools capable of transducing a variety of dividing and non-dividing cells, including pluripotent stem cells which are refractory for transduction by murine retroviruses. Although there is a growing debate on the safety of lentiviral vectors for gene transfer, in particular for those derived from human immunodeficiency viruses, type one (HIV-1) and ...
متن کاملنگاهی به ژن درمانی، پیشرفتهای اخیر و چشم انداز آینده
Human gene therapy has attracted increasing attention as a highly encouraging therapeutic approach to treat wide variety of diseases, other than genetically inherited and monogenic disorders. This approach entails the introduction and expression of a variety of nucleic acids into human target cells for therapeutic purposes. In this article, we review the history, highlights, recently progresses...
متن کاملRibosomal DNA integrating rAAV-rDNA vectors allow for stable transgene expression.
Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we crea...
متن کاملDesign and Potential of Non-Integrating Lentiviral Vectors
Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors...
متن کاملThe Role of Chromatin in Adenoviral Vector Function
Vectors based on adenovirus (Ad) are one of the most commonly utilized platforms for gene delivery to cells in molecular biology studies and in gene therapy applications. Ad is also the most popular vector system in human clinical gene therapy trials, largely due to its advantageous characteristics such as high cloning capacity (up to 36 kb), ability to infect a wide variety of cell types and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 12 شماره
صفحات -
تاریخ انتشار 1997